Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Research Journal of Pharmacy and Technology ; 15(9):4235-4240, 2022.
Article in English | EMBASE | ID: covidwho-2207036

ABSTRACT

Coronavirus disease known as COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 binds to the receptor binding-domain of ACE-2. By blocking it with a specific ligand, we can prevent SARS-CoV-2 binding and therefore prevent its cellular entry and injury. The number of COVID-19 cases is still increasing and yet only 2.5% of Indonesians are fully vaccinated. Moreover, up to now, a specific cure for COVID-19 has not been found yet. However, many traditional medicinal plants have the potency of becoming COVID-19 drugs. Therefore, this study aimed to examine various active compounds derivate from the traditional medicinal plant as an inhibitor of SARS-CoV-2 receptor in human cell termed as ACE2. The activity and drug-likeness of the active compounds were predicted and molecular docking were conducted to identify the interactions between ligands and ACE-2. Toxicity assay was also identified to predict the toxicity class, lethal dose, and organ toxicity. This study showed that indirubin has lower binding energy as compared to the sulabiroins A and MLN-4760 as comparative control and potent inhibitor control, respectively. Indirubin shared similar interaction with amino acid residue to ACE-2 as compared to control. Based on the research result, it was suggested that Indirubin could be developed as a promising compound for COVID-19 antiviral drugs. Copyright © RJPT All right reserved.

2.
International Journal of Applied Pharmaceutics ; 15(1):93-97, 2023.
Article in English | EMBASE | ID: covidwho-2205069

ABSTRACT

Objective: Coronavirus disease-19 (COVID-19) is global pandemic which caused by SARS-CoV-2 infection. Mechanism of infection is initiated by attachment between viral glycoprotein with ACE2 receptor in human cells. Furthermore, Indonesia had a massive diversity of plants with a high potency of drugs, such as Pogostemon cablin Benth. In brief, it contained of various volatile compounds with many therapeutic properties. Therefore, this research aimed to identify the ability of volatile compounds from Pogostemon cablin Benth as a potential inhibitor of SARS-CoV-2 spike glycoprotein. Method(s): SMILE notation of 22 volatile compounds of Pogostemon cablin Benth were collected from PubChem and the 3D structure of SARS-CoV-2 glycoprotein (PDB ID: 6VXX) was obtained from PDB database. Simulation of interaction between volatile compound and glycoprotein was conducted by using Pyrx molecular docking. Moreover, the complex of compounds-glycoprotein was depicted by using Chimera and the amino acid residue was analysed by using LigPlot. Selected potential compounds were identified for biological activity prediction, drug-likeness, and toxicity analysis. Result(s): Analysis showed that among those volatile compounds, only caryophyllene oxide (-6.3 kcal/mol) naturally bind specific into RBD site as compared to the control. Furthermore, it had comparable hydrogen and hydrophobic interactions with glycoprotein. Further analysis showed it has strong potential biological function for antiviral with low toxicity. Conclusion(s): Caryophyllene oxide is considered as promising candidate compounds that inhibited viral infection through SARS-CoV-2 glycoprotein. Copyright © 2023, Innovare Academics Sciences Pvt. Ltd. All rights reserved.

3.
Pharmacognosy Journal ; 14(1):85-90, 2022.
Article in English | CAB Abstracts | ID: covidwho-1903772

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19 which is responsible for respiratory illness infection in humans. The virus was first identified in China in 2019 and later spread to other countries worldwide. This study aims to identify the bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanisms against two SARS-CoV-2 proteases through the in silico approach. The three-dimensional structure of various bioactive compounds of mangosteen from the database was examined. Furthermore, all the target compounds were analyzed for drug, antiviral activity prediction, virtual screening, molecular interactions, and threedimensional structure visualization. It aimed to determine the potential of the bioactive compounds from mangosteen that can serve as antiviral agents to fight SARS-CoV-2. Results showed that the bioactive compounds from mangosteen have the prospective to provide antiviral agents that contradict the virus via dual inhibitory mechanisms. In summary, the binding of the various bioactive compounds from mangosteen results in low binding energy and is expected to have the ability to induce any activity of the target protein binding reaction. Therefore, it allows various bioactive compounds from mangosteen to act as dual inhibitory mechanisms for COVID-19 infection.

4.
Journal of Pharmacy & Pharmacognosy Research ; 10(1):138-146, 2022.
Article in English | Web of Science | ID: covidwho-1481619

ABSTRACT

Context: The COVID-19 outbreak is caused by the transmission and infection of SARS-CoV-2 at the end of 2019. It has led many countries to implement lockdown policies to prevent the viral spreading. Problems arise in a COVID-19 patient because of viral infection that leads to a systemic response in the immune system, specifically due to cytokine storm. Moreover, the antiviral drugs that have not been found. Indonesia had a variety of traditional medicines, such as is 'jamu'. It consists of a mixture of natural ingredients such as Moringa oleifera Lam. and Curcuma longa L. Aims: To identify the activity of dual inhibitors as antiviral and anti-inflammatory agents from herbal combination compounds. Methods: Sample was collected from PubChem (NCBI, USA) and Protein Data Bank (PDB), then drug-likeness analysis using Lipinski rule of five in SCFBIO web server and bioactive probability analysis of bioactive compounds were conducted by PASS web server. Furthermore, the blind docking method was performed using PyRx 0.8 software to determine the binding activity and molecular interaction by PoseView web server and PyMol software v2.4.1 (Schrodinger, Inc, USA). Results: Cryptochlorogenic acid and curcumin have been computationally proven as dual inhibitors for antivirals by inhibiting Mpro SARS-CoV-2 and as anti-inflammatory through inhibition of NFKB1 activity. However, the results are merely computational so that it must be validated through a wet lab research. Conclusions: The combination of Moringa oleifera Lam. and Curcuma longa L. is predicted to have antiviral and anti-inflammatory activity through dual inhibitor mechanism played by cryptochlorogenic acid and curcumin.

5.
Indian Journal of Forensic Medicine and Toxicology ; 15(4):2797-2803, 2021.
Article in English | EMBASE | ID: covidwho-1449618

ABSTRACT

Cluster of pneumonia infection emerged in Wuhan, China due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, more than 190 countries have confirmed 82 million cases of SARS-CoV-2 infection. Currently, there is a SARS-CoV-2 epidemic, and no effective prophylactic methods are available. A vaccine is considered as an effective method to restrict an epidemic. Several vaccine designing techniques have been established, which is enabling researchers from various institutes for developing vaccine towards SARS-CoV-2 infections. In this review, we condense the development of vaccine research against SARS-CoV-2.

6.
Journal of Pure and Applied Microbiology ; 14(Suppl. 1):971-978, 2020.
Article in English | CAB Abstracts | ID: covidwho-1395588

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus and the primary causative agent of coronavirus disease 2019 (COVID-19), first occurred in China and rapidly spread worldwide. The government of the Republic of Indonesia confirmed its first two cases of COVID-19 in March 2020. COVID-19 is a serious illness with no efficacious antiviral medication or approved vaccine currently available. Therefore, there is a need to investigate the genome of SARS-CoV-2. In this study, we characterized SARS-CoV-2 spike glycoprotein genes from Indonesia to investigate their genetic composition and variability. Overall, ten SARS-CoV-2 spike glycoprotein gene sequences retrieved from GenBank (National Center for Biotechnology Information, USA) and the GISAID EpiCoV database (Germany) were compared. We analyzed nucleotide variants and amino acid changes using Molecular Evolutionary Genetics Analysis (MEGA) X and analyzed gene similarity using the LALIGN web server. Interestingly, we revealed several specific mutation sites, however, there were no significant changes in the genetic composition of SARS-CoV-2 spike glycoprotein genes, when compared to the Wuhan- Hu-1 isolate from China. However, this is a preliminary study and we recommend that molecular epidemiology and surveillance programs against COVID-19 in Indonesia be improved.

SELECTION OF CITATIONS
SEARCH DETAIL